350 research outputs found

    Numerical solutions of a boundary value problem on the sphere using radial basis functions

    Full text link
    Boundary value problems on the unit sphere arise naturally in geophysics and oceanography when scientists model a physical quantity on large scales. Robust numerical methods play an important role in solving these problems. In this article, we construct numerical solutions to a boundary value problem defined on a spherical sub-domain (with a sufficiently smooth boundary) using radial basis functions (RBF). The error analysis between the exact solution and the approximation is provided. Numerical experiments are presented to confirm theoretical estimates

    Zooming from Global to Local: A Multiscale RBF Approach

    Full text link
    Because physical phenomena on Earth's surface occur on many different length scales, it makes sense when seeking an efficient approximation to start with a crude global approximation, and then make a sequence of corrections on finer and finer scales. It also makes sense eventually to seek fine scale features locally, rather than globally. In the present work, we start with a global multiscale radial basis function (RBF) approximation, based on a sequence of point sets with decreasing mesh norm, and a sequence of (spherical) radial basis functions with proportionally decreasing scale centered at the points. We then prove that we can "zoom in" on a region of particular interest, by carrying out further stages of multiscale refinement on a local region. The proof combines multiscale techniques for the sphere from Le Gia, Sloan and Wendland, SIAM J. Numer. Anal. 48 (2010) and Applied Comp. Harm. Anal. 32 (2012), with those for a bounded region in Rd\mathbb{R}^d from Wendland, Numer. Math. 116 (2012). The zooming in process can be continued indefinitely, since the condition numbers of matrices at the different scales remain bounded. A numerical example illustrates the process

    Logarithmic and Riesz Equilibrium for Multiple Sources on the Sphere --- the Exceptional Case

    Full text link
    We consider the minimal discrete and continuous energy problems on the unit sphere Sd\mathbb{S}^d in the Euclidean space Rd+1\mathbb{R}^{d+1} in the presence of an external field due to finitely many localized charge distributions on Sd\mathbb{S}^d, where the energy arises from the Riesz potential 1/rs1/r^s (rr is the Euclidean distance) for the critical Riesz parameter s=d2s = d - 2 if d3d \geq 3 and the logarithmic potential log(1/r)\log(1/r) if d=2d = 2. Individually, a localized charge distribution is either a point charge or assumed to be rotationally symmetric. The extremal measure solving the continuous external field problem for weak fields is shown to be the uniform measure on the sphere but restricted to the exterior of spherical caps surrounding the localized charge distributions. The radii are determined by the relative strengths of the generating charges. Furthermore, we show that the minimal energy points solving the related discrete external field problem are confined to this support. For d2s<dd-2\leq s<d, we show that for point sources on the sphere, the equilibrium measure has support in the complement of the union of specified spherical caps about the sources. Numerical examples are provided to illustrate our results.Comment: 23 pages, 4 figure
    corecore